
An Epics Data Archiver using MySQL, Python, and Apache

Matthew Newville

Consortium for Advanced Radiation Sciences
University of Chicago

October 12, 2010

http://cars9.uchicago.edu/cgi-bin/pvarch/

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Why an(other) Epics Data Logger?

Started in 2001, actually. Wanted to learn SQL.

Use a relational database (MySQL) for data storage.

Web interface over standard ports and with standard web tools.
I get beam-line status information from anywhere
I access, view historical data for diagnosing problems.

Automated Alerts (email) when a condition is met.

NOT fast data collection – that’s a different application.

There are many similar Archivers (even at different APS beamlines)

Are Archivers so simple that everyone just builds their own?

Can anything be learned from any one of the implementations?

Is a relational database a good fit for Epics Archival Data?

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Why an(other) Epics Data Logger?

Started in 2001, actually. Wanted to learn SQL.

Use a relational database (MySQL) for data storage.

Web interface over standard ports and with standard web tools.
I get beam-line status information from anywhere
I access, view historical data for diagnosing problems.

Automated Alerts (email) when a condition is met.

NOT fast data collection – that’s a different application.

There are many similar Archivers (even at different APS beamlines)

Are Archivers so simple that everyone just builds their own?

Can anything be learned from any one of the implementations?

Is a relational database a good fit for Epics Archival Data?

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

A tour of the web interface (GSECARS Archiver)

Main features:

& 5000 PVs

MySQL

Apache

Python

CA callbacks

web-definable alerts

tabs separate PVs by
sub-systems

templates for web pages

PV values displayed as html links to Plot of Data

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Data file and plotting script available as a download

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Data file and plotting script available as a download

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Data file and plotting script available as a download

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Data file and plotting script available as a download

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Templates for Web Status Pages

The web status pages are generated from a simple template:

Web Page Template

[Storage Ring]

S:ActualMode.VAL | Machine Status

S:SRcurrentAI.VAL | Storage Ring Current (mA) | %8.3f

S:SRlifeTimeHrsCC.VAL | Storage Ring Lifetime (hours)| %8.3f

S:DesiredMode.VAL | Operating Mode

...

[ID EPS]

13IDA:eps_mbbi57.VAL | Front End Valve

13IDA:eps_mbbi4.VAL | Front End Shutter

13IDA:eps_mbbi81.VAL | Vacuum Status

...

[Configuration]

PA:13ID:Q01:00.VAL,...|ID Stations Searched (A,B) | yes/no

PA:13BM:Q01:00.VAL,...| BM Stations Searched (A,B) | yes/no

...

Each “Tab” has a separate template file.

Templates are read dynamically – easy to add and change what is displayed.

A Makefile sets the order of the Tabs.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Architecture: A Cache of Current PV values

Main Implementation Issues:

1 Epics CA needs a connection for each PV for each process / thread.

2 A Web server may render each page as a separate process.

3 The Archiving needs continual access to new values for all PVs.

A web interface could be very slow, waiting for PV connections even though most will
disappear and be reconnect for the next page.

Key Implementation Decision: Break Archive task into two processes.

Caching Process stays connected to all PVs, maintains table of latest
values using CA callbacks, handles alerts.

Archiving Process reads PV data for Cache table, archives as needed.

Web pages simply access the Cache tables to read the latest PV values.
1 DB connection is much faster than 100 PV connections.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Architecture: A Cache of Current PV values

Main Implementation Issues:

1 Epics CA needs a connection for each PV for each process / thread.

2 A Web server may render each page as a separate process.

3 The Archiving needs continual access to new values for all PVs.

A web interface could be very slow, waiting for PV connections even though most will
disappear and be reconnect for the next page.

Key Implementation Decision: Break Archive task into two processes.

Caching Process stays connected to all PVs, maintains table of latest
values using CA callbacks, handles alerts.

Archiving Process reads PV data for Cache table, archives as needed.

Web pages simply access the Cache tables to read the latest PV values.
1 DB connection is much faster than 100 PV connections.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Cache Table and Process

The Cache table looks like this:

Cache Table (SQL)

create table cache (

id int unsigned not null primary key auto_increment,

pvname varchar(64) not null,

type varchar(64) not null default ’int’,

value tinyblob default null,

cvalue varchar(64) default null,

ts double not null default 0,

active enum(’yes’,’no’) not null default ’yes’);

create index pvname_id on cache (pvname);

The Cache table holds current data:

(Name, Value, StringValue, Time)

These are kept up-to-date with
CA callbacks.
SQL UPDATE

What gets Cached? What gets Archived?

5000 PVs, 80% from Epics Motors. 436 Motors, each with 10 fields:

.VAL .OFF .FOFF .SET .HLS .LLS .DIR able.VAL .SPMG .DESC

are monitored and archived. These rarely change. But we want to know when they do.

∼ 600 other variables. Very few arrays (only CHAR waveforms used as long strings).

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Cache Table and Process

The Cache table looks like this:

Cache Table (SQL)

create table cache (

id int unsigned not null primary key auto_increment,

pvname varchar(64) not null,

type varchar(64) not null default ’int’,

value tinyblob default null,

cvalue varchar(64) default null,

ts double not null default 0,

active enum(’yes’,’no’) not null default ’yes’);

create index pvname_id on cache (pvname);

The Cache table holds current data:

(Name, Value, StringValue, Time)

These are kept up-to-date with
CA callbacks.
SQL UPDATE

What gets Cached? What gets Archived?

5000 PVs, 80% from Epics Motors. 436 Motors, each with 10 fields:

.VAL .OFF .FOFF .SET .HLS .LLS .DIR able.VAL .SPMG .DESC

are monitored and archived. These rarely change. But we want to know when they do.

∼ 600 other variables. Very few arrays (only CHAR waveforms used as long strings).

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Archiving Process and databases

The pvarch program:

allows adding, deleting PVs.

starts and stop caching and arching process.

organizes archival data into “Runs” (∼monthly).

Each Run pvarchive 00001, pvarchive 00002, has these tables:

Table Important Columns

PV ID, Name, DataTable, DeadTime, DeadBand
pvdat001 PV ID, TimeStamp, Value
pvdat002 PV ID, TimeStamp, Value

.

.

.

pvdat128 PV ID, TimeStamp, Value

Column Meaning

DataTable which pvdatNNN data is stored in.
DeadTime time to wait between archive writes.
DeadBand fractional change in value to ignore.

The data stores were broken up into 128 tables for faster lookups.

This should be re-evaluated.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Archiving Process and databases

The Archiving Process:

reads recent data from the Cache, writes to the Archive tables.

throttles recording of changes with a DeadTime and DeadBand.

Throttling with DeadTime and DeadBand
DeadTime:

After recording a change, further changes are
not recorded until the DeadTime has expired.

If many new value arrives in that interval, only the final value will be recorded.

Typical DeadTime = 1 sec.

DeadBand:
minimum fractional change recorde for DOUBLE/FLOAT PVs.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Architecture: Other Tables

Other Tables hold information for

Runs lists Archives database by time range of “Run”.

Pair Scores for Related Pairs of Variables.

Instruments groups of PVs to treat as a logical unit.

Alerts data for email alerts on alarm conditions

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Architecture: Other Tables

Other Tables hold information for

Runs lists Archives database by time range of “Run”.

Pair Scores for Related Pairs of Variables.

Instruments groups of PVs to treat as a logical unit.

Alerts data for email alerts on alarm conditions

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Performance: Caching

Cache Startup Statistics:

Message Delta(s) Total(s)

connecting to 5028 PVs 0.238 0.238

Created 5028 PV Objects 6.430 6.668

Connected to PVs (60 not connected) 29.063 35.730

got initial values for PVs 7.597 43.327

Entered values for 5028 PVs to Db 0.939 44.266

added callbacks for PVs 0.035 44.301

looked for unconnected pvs: 60 not connected 5.867 50.168

pvs connected, ready to run. Cache Process ID= 21317

Starting Cache process for
∼5000 PVs takes ∼50 sec
includes getting DBR CTRL
data and looking twice for
un-connected PVs

Cache Loop:

def onChanges(self, pvname=None, value=None, char_value=None,

timestamp=None, **kw):

self.data[pvname] = (value, char_value, timestamp)

if pvname in self.alert_data:

self.alert_data[pvname][’last_value’].append(value)

def mainloop():

connect_to_db()

connect_to_PVs()

while True:

epics.poll(1.e-4)

update_cache_table()

every_15_seconds:

process_alerts()

The Cache loop runs at
∼150 Hz (∼7 msec/loop)

Most changes are from ∼100
PVs that change at ∼10Hz.

Alerts are handled here.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Performance: Caching

Cache Startup Statistics:

Message Delta(s) Total(s)

connecting to 5028 PVs 0.238 0.238

Created 5028 PV Objects 6.430 6.668

Connected to PVs (60 not connected) 29.063 35.730

got initial values for PVs 7.597 43.327

Entered values for 5028 PVs to Db 0.939 44.266

added callbacks for PVs 0.035 44.301

looked for unconnected pvs: 60 not connected 5.867 50.168

pvs connected, ready to run. Cache Process ID= 21317

Starting Cache process for
∼5000 PVs takes ∼50 sec
includes getting DBR CTRL
data and looking twice for
un-connected PVs

Cache Loop:

def onChanges(self, pvname=None, value=None, char_value=None,

timestamp=None, **kw):

self.data[pvname] = (value, char_value, timestamp)

if pvname in self.alert_data:

self.alert_data[pvname][’last_value’].append(value)

def mainloop():

connect_to_db()

connect_to_PVs()

while True:

epics.poll(1.e-4)

update_cache_table()

every_15_seconds:

process_alerts()

The Cache loop runs at
∼150 Hz (∼7 msec/loop)

Most changes are from ∼100
PVs that change at ∼10Hz.

Alerts are handled here.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Performance: More Statistics (5028 PVs)

Hardware: 2 Dual-Core Opterons 2.4GHz, 8Gb RAM, SCSI disks.

Process Activity Typical Value

Cache Pend/Update Loops per second 120
Total Updates per second 150
PVs changed in past minute 100
PVs changed in past hour 200

Archive Loops per second 50
Values Archived per second 20

Typical top output:

Cpu0 : 3.7%us, 3.0%sy, 0.0%ni, 47.0%id, 43.0%wa, 1.7%hi, 1.7%si, 0.0%st

Cpu1 : 14.0%us, 2.0%sy, 0.0%ni, 84.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 1.3%us, 0.0%sy, 0.0%ni, 98.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu3 : 54.0%us, 1.0%sy, 0.0%ni, 45.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 8264184k total, 4782832k used, 3481352k free, 405116k buffers

Swap: 5406712k total, 49344k used, 5357368k free, 3234884k cached

PID USER VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15958 mysql 750m 573m 6284 S 51.5 7.1 2482:49 /usr/libexec/mysqld ...

18823 root 60436 27m 2576 S 13.9 0.3 486:22.26 python /usr/bin/pvarch start

21317 root 77972 34m 3548 S 10.6 0.4 401:56.85 python /usr/bin/pvarch cache start

System archives ∼15 Mb / day.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Is Epics Archival data relational?

Maybe. A relational DB is really good for asking:

Show me the Mirror Angles when the Ring Current < 100mA and
Monochromator Temperature > −120◦ C since last April.

I never do this. For me, the data has one axis: Time.

1 Get Mirror Angle, Ring Current, and Monochromator Temperature since last April.

2 Filter data based on Ring Current and Monochromator Temperature.

Maybe I’m just to lazy to write complex SELECT statements.

But: An RDBMS has many other useful features built in:

Data integrity and portability.

Scales to huge data sizes.

Client-Server model for multiple data writers and readers.

A security model.

Years of work behind it.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Is Epics Archival data relational?

Maybe. A relational DB is really good for asking:

Show me the Mirror Angles when the Ring Current < 100mA and
Monochromator Temperature > −120◦ C since last April.

I never do this. For me, the data has one axis: Time.

1 Get Mirror Angle, Ring Current, and Monochromator Temperature since last April.

2 Filter data based on Ring Current and Monochromator Temperature.

Maybe I’m just to lazy to write complex SELECT statements.

But: An RDBMS has many other useful features built in:

Data integrity and portability.

Scales to huge data sizes.

Client-Server model for multiple data writers and readers.

A security model.

Years of work behind it.

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

Conclusions

Archival data should be stored in an SQL-based
RDBMS unless this can be shown to not work.

The web interface matters.

Ease of configuration and use matters.

For high performance and scale, use multiple
processes, data stores, and server processes.

http://cars9.uchicago.edu/cgi-bin/pvarch/

Matthew Newville (CARS, Univ Chicago) Epics Data Archiver October 12, 2010

	Motivation and Perspective
	Why an(other) Epics Data Logger?

	Web Interface
	A tour of the web interface (GSECARS Archiver)
	Plotting Historical Data

	Templates for Web Status Pages
	Caching and Archiving
	Architecture: A Cache of Current PV values
	Archiving Process and databases
	Archiving Process and databases
	Architecture: Other Tables

	Performance
	Performance: Caching
	Performance: More Statistics

	Conclusions
	Is Epics Archival data relational?
	Conclusions

